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Absiract. The star operations and reglity conditions for the complex quantum algebra
4 (51(4; C)) providing rezl quantura algebras Uy(e(6 — k&, kN & = 0,1, 2,3 and Uy(su(3, 1))
are classified. Standard and non-standard star operations are considered. It appears that only
faur choices of real forms (ane with (¢] = 1, three with g real) provide real Hopf algebra
Ug(sul2, 23} = Uglo(d, 2)} deseribing D = 4 conformal quantum algebras, We show that only
the antipode-extended Cartan-Weyl basis of U,(s/(4; C)) permits to define real g-deformed
D = 4 conformal algebra generators. In order to obtain the real D = 4 Weyl algebra as Hopf
subalgebra of Uy(su(2, 2)) only the non-standard real forms can be employed.

1. Imiroduction

Recently the Cartan—Weyl basis of quantum Lie algebra U, (s/(4; C)) was considered as the
framewaork for the description of g-deformed D = 4 conformal algebra [1-5].. Because
the algebra s/(4,C) describes complexified D = 4 conformal algebra it is important
to select real forms of U 7(s1(4; C)) describing g-deformed D = 4 conformal algebra
Ug(su(2,2)) = U, (of4, 2)) In the paper {2] two real forms of Uj{e, (4, 2)) were obtained
by using non-standa_rd ¢-involution which is an automorphism in both algebra and coalgebra
sectors|i:

@ b)®=52.2%  (A()® = A'(a®) (L)

where A’ = vo A (7 is a flip operator). Unfortunately at least for generic g the non-standard
@ involutions at least for generic g lead to difficulties in the representation theory of &
real Hopf algebras {e.z. it is not known how to avoid the indefinite metric in the tepsor
product representations), In this paper we would like to consider the standard real forms of
Uy (si(4; C)) with the star operation described by + involution satisfying the relations:

(a-)t =b1.a* (A@)t = Aa™). {1.2)

* Partially supported by KBN grant Nr.2/0124/91/01.
9 On leave of absence from Institute of Theoretical Physics, Wroclaw University, Pi. Maxa Borna 9, 50-205
Wroclaw, Poland.

)l Four possible types of involutive mappings of the Hopf algebras denoted by +, &, + and @ were introduced
in [5] and subsequently discussed in [6,7]. The &-involution is denoted in [7] as (1,1} and +-involution as (1,0}
semilinear mappings.
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The difference between the involutions (1.1) and (1.2) appears also in different forms of the
compatibility conditions of the star operation with the anitpode § [5-7]:

Sod=Hcs Sot+oSo+ =1, (1.3)

Curiously enough it was easier to define the real g-deformed conformal generators if we used
the non-standard involution (1.1). Using the following & involution of the Cartan-Weyl
basis of U, (si(4; C)) (for real q)

h® = —hy B = —~hy
eil = €43 e$2 = éia (1.4)

we were able to show in [2] that the following sequence of inclusions of real Hopf algebras
is valid:

Up(o(3, 1)) C Uy(Pu-D D) C Uyglo(d, 2)} (1.5)

where U, (Ps4D D) denotes real D = 4 g-deformed Weyl algebrat. The sequence (1.5} is
important from the point of view of possibie physical applications,

One can raise an important question whether the sequence (1.5} can be written with
reality conditions described by the standard involution (1.2). Unfortunately the answer
is negative. We shall show below that there are enly four standard + involutions defining
g-deformed real D = 4 conformal algebra U, (o(4, 2)) both having the following properties:

(1) The involutions take out from the Cartan-Wey! basis, i.e. in order to define for g # |
the D = 4 conformal generators, one has to introduce 21 generators of antipode-extended
Cartan-Wey! generators {15 generators of Cartan-Wey! basis and six generators S(es,)
where a = 4, 5,6).

(ii) The relation (1.5) is not valid, i.e, the real ¢g-deformed conformal algebras defined
by means of standard involutions can not be used for defining the g-deformed Poincare and
Weyl algebras.

The plan of our paper is the following. Firstly in section 2 we present the Cartan-Weyl
basis of complex quantum algebra U, (s{(4; C)), i.e. provide the algebra, coproducts and
antipodes for 15 generators f;, exa{A = 1...6}. The action of antipode S imtroduces 21
generators of antipode-extended Cartan-Weyl basist. In section 3 following Twietmeyer
(8] we provide the description of real Hopf algebras U,(e(6 — &, &)} (k =0, 1,2, 3} and
U, (su(3, 1)) as real forms of U, (sl(4; ©)). It appears that many reality conditions take out
from the Cartan~Weyl basis, and we would like to stress that all the real forms defining
Uy(o(4, 2}) are of this type. In section 4 we introduce three involutive automorphisms of
U, (si(4; Cy): :

(i) Q-automorphisms (type %) describing mapping ¢ ~ g~

(i) Q-automorphism (type @) exchanging the first and third root in the Dynkin diagram
for sl{4; C} (g vnchanged);

(ii)) T-automorphism (type @) reversing the order of operators in products (g
unchanged).

We shall show that having these three operations one can obtain all the other involutions of
Uy, (s1(4; ©)) belonging to the four types of involutive antomorphisms discussed in [5,7].
In section 5 we shall discuss the reality conditions for the universal R-matrix of D = 4
g-deformed conformal algebra. In section 6 we shall present final comments.

t We denote by Py the ¢ = 4 Poincaré algebra and by D the dilatation operator.
t In section 2 we shall present the formulae from {2] with the error in the coproduct sector cormrected.
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2. Antipode-extended Cartan-Weyl basis for U,(sl(4; C))

The Cartan—Cheveley basis of U, (si(4; C)) is given by the formulaer

[h;. Be] =0 ,
2 -1 0
h;, = 4a
thy» exa] = Lapess ay = (-1 2 ~1) @1
ki —k
L ghi—gh 0 -1 2
lejs el —ajk—"“‘q = il
where f; describe the Cartah subaigebra and ¢;, e-; (j = 1,2,3) are the generators

corresponding to simple roots. Let us define the generators corresponding to non-simple
roots as follows [9, 10]:

es = [e1, e2ly e_q = [e_p, e~]p~
es = [e2, &3], e_s =[e_3, el
es = [e1, es], e_g=[e_s, e_1]- (2.2)

where [A, Bl, = AB — xBA. It appears that relations (2.1) can be extended as follows
(A, B=1...6)

2 -1 0 1 -1 1y

-1 2 -1 1 1 0

' ) -1 2 =1 1 1
[ha, exal = taspess ais=| y | 1 2 o 1| @3

-1 1 1 0 2 1

1 Q 1 1 1 2

where by = hy + ha, hs = ha + hs, hg = k1 + ks and
ha —_— _ha .

lea o] =T =) a=4,56. 24

g—-q-!

We can write down also all the remaining relations between generators of U, (s/(4; C)).
For generators corresponding to positive roots we obtain:

[E]_. eﬁ]q'i =0

lea, €3]y =0

[ez, es]g— =0 ,
[ei,es] =0

[e3, 5], =0 (2.3)
les, €3]y = €5

[ez,e5] =0
(e, -‘34]q-l =0

Ee31 e6]q = 0

supplemented by

[es, es] = —(g — g Neaes
les, g6l =0 les, es]y, = 0. (2.6)
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Further, we obtain

le1,e~5] =0 [e2.e.6] =0

lez, e_s] = e_1g™ les, ecs] = e_og™

le3, eg] = e_4q™ lea, e21] = e_ng™

[es, e-3] =0 les, e_s] = (g — g~ )g e3¢,
[es, -] = ~e3g™ [es, e_¢] = e_1g™**%

[eg. e-1] = —e_sq™ {es, e_q] = e3g™ T2,

27

If we add to the relations (2.5)-(2.7), the conjugated ones obtained by means of the

involutive antiautomorphism 4; — hAj, ex; — ezj, ¢ — g7

set of relations describing the Cartan—-Weyl basis of U, (s{(4; C)).

we obtain the complete

The formulae for coproducts are the following (this choice is not unique; see e.g.

equation (2.12)):
Alerj) =esr; @k; + k;l @ ex;
AKE) = kF' @ K =123
which imply
Aley) =es®@ka+ k) ' Res+ (1 — gDk e2 @ erky
Alec)y =e 4 ®ks+ k' ®e_s + (1 =g ke ® e_aky
Aes) =es @ ks + k5 ®es+ (1 —g7)k; ' es @ eaks
Aesy=e_s@ks +ki' @es+(1—g " Mk;' ey @ eska
Aleg) = es R kg + k5 Qe+ (1 — g2k es @ erks + & 'es ® eaka)
Alecg) = e_g ®kg+ kg' @ emg+ (1 —g kI len) @ esky + k5 'e_y @ e_sks)

where ky = g~", A=1...6.
The formulae for the antipode

Slee;) = —qTles; (=123 Slexs) = ¢Téss
S(ers) = gFe14 S{eze) = —q T bag

introduce the generators of anitpode-extended Cartan-Wey| basis:

e4 = [ea, e1]y ey =[e-1, 3]y
&5 = [e3, e2], é-s = [e-2,€ 3]y
és = s, e, e =[e.1,€_5l5-1.

One can extend the relations for Cartan-Weyl basis by adding the generators (2.11).

It should be mentioned that we introduce the new generators

thy /2

Exa=¢q 2xa

(2.8)

2.9

(2.10)

(211

(2.12)
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the coproducts are given by the following non-symmetric form:

AE)=E®1+q¢"QE;
AME.)=E ®l+qg™@E,; . (2.13)

and the formulae (2.1} and (2.4) can be written for the generators Ess if [x), =
(1 —g%)/(1 — q?). It appears, for example, that the coproducts (2.13) were used in [11] in
the derivation of the universal R-matrix formula. One can also think of coproduct (2.13)
as obtained from (2.8) by twisting [12].

3. Standard real forms of Uz(sl(4; C))

Twietmeyer [8] obtained a complete list of standard real forms of U,(&), where G is
any simple complex Lie algebra. By a standard real form we mean here a morphism ¢:
U, (G) — U,(8) with the following properties (X, Y € G, u, v € Cxf

®?=1 (3.1a)

P(XY) = P(YIP(X) (3.18)

DX +vY) = w O(X) + v oY) (3.1¢)

Aod=(PR D)o A . (3.1a)
which imply

PoSodosS=1 (3.1e)

€(D(X)) = (e(X)". (3.1

Twietmeyer’s list was given for the specific choice of the coproduct in &/, (G)—that
given for U,(sl{4; ¢)) by (2.13), It can however be shown that for other coproducts one
obtains analogouws classification and our results below are given for the coproduct (2.8). As
g - 1 they in fact become the same.

In applications one must be able to recognize which real form of the complex Lie
algebra G does correspond to ¢. For this purpose we would like to remind some basic
facts from the theory of real Lie algebras. A fundamental theorem (see e.g. {13]) tells us
that real forms of a complex simple Lie algebra G are described by means of involutive
automorphisms of G, 1.e. mnorphisms ¥ satisfying: '

w2 =1 7
WX, YD) =[¥(X), ¥(¥)]
U{pX -+ vY) = p ¥ (X) +v¥(¥). (3.3)

The simplest method to investigate which two transformations with the above properties
describe isomorphic real Lie algebras i1s based on the analysis of the action of W on the
(unique) compact real form of G. When diagonalized ¥ can only have eigenvalues 3-1. If

i According to [5] the standard real fé)rms are described by +-involution. The relations (3.15) and (3.1e) are
written already. as relations (1.2) (first one) abd (1.3) second ane}.
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‘negative’ eigenvectors are multiplied by 1 we obtain a real Lie algebra Gy with generators
satisfying the reality condition W (X} = X. Two ¥’s with different spectrum define non-
isomorphic real Lie algebras (see e.g. [13]).

In the case of 5{(4; C) spectrum of W characterizes real forms completely. If we look
at five real forms of that Lie algebra we quickly recognize that corresponding ®°s have the
following number of minus signs in their spectrum (in the action on su(4)):

su{dy ~4Q su(3, 1)~ 6

sl(4;R) ~9 su*(d4y~5

su(2,2) ~ 8. (3.4)
As ¢ — ] every antiautomorphism ¢ given in (3.1) defines a real form of s!(4; C)—
it consists from elements satisfying the condition ¢(X) = —X. It is easy to find a
corresponding automorphism W which gives rise to the same set of real generators. If we
look now at its spectrum we immediately recognize what real form of s1{4; C) is described
by &. Twietmeyer obtained 12 non-equivalent real forms in that case. As ¢ — 1 they
correspond to all five real forms of sI(4;C). Both numbers disagree as we obtain four
non-isomorphic quantum deformations of Uy(su(2; 2)) = Ug(o(4,2)), two deformations
of Uy(si{4; R) = U,(0(3,3)) and four deformations of su(3, 1); only deformations of
Ug(su(4)) = Uqy(0(6)) and U, (su*(4)) = Uy(0(5, 1)) have unique (up to equivalence) real
forms. Here we reproduce a complete list of real forms of U, (si(4; C) (for a coproduct
given in equation (2.8); j = 1,2, 3):

lg] =1 Dyl =—hy_; Dylesj) = ezpa-p Ug{old,2))

lg] =1 ok = —h; Cofes;) = ey Uy(0(3,3)}

geR D3(h;) = ha; B3les;) = exu-p U, (o(5, 1))

geR Galh;) = hy-; Paless) = (=) ezu_p U,(0(3,3))

gelR Ds(hy) = h; bsles;) = ¢jex; (e, = £1). (3.5)

The real forms described by Cartan involutions $s are given in the following table:

Table 1. Standard Cartan +— involutions for Uy {(si(4; ).

€} €2 €  Real form
L1 L U,y (o(6)) = Uglsu(d))
-1 1 1 Uy (su(3,13)

[ -1 t Ug(o(4,2)) = Uy(su(2,2))
-1 -1 1 Up(su(3, 1))
1 [ UpGsulB, 1H
-1 -1 Uy(o(4,2)) = Uy(su(2,2))
I -1 ~t Uy (sul(3, 1))
-1 -1 =1 Uy (o(4,2)) = Uglsa(2,2))

The morphisms &, (¢ = 1...5) are completely defined by its action on simple root
generators of U, (sI{4; ¢)). In particular we can deduce how does & act on other generators
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of the Cartan—Weyl basis. Let us take for example e; = [e), €2];- In five cases listed in
equation (3.5) we obtain:

Di(eq) = —q‘l??s ®z(eq) = —-g-!84
Q3les) = —qes Pules) = ge-s
Ds(eq) = —gere2e_q. (3.6)

Therefore only in the case of real forms defined by means of morphisms &4, &5, &4 does its
action not lead us outside the Cartan~Weyl basis. On the other hand ¢, and ¢5 inevitably
leads us to the antipode-extended Cartan~Weyl basis defined in (2.11).

We see that deformation of the conformal algebra su(2; 2) can only be achieved by
means of morphisms $; and &5, withe; =3 =—lorey =e3 =1 and e = =1.

Let us write the action of &, $5 on the Cartan—Weyl basis of /,(s!{(4: ¢)), providing
real conformal algebras U, {(o(4, 2)):

Oi(e)) =e3 @i{ex) = &2 Dy(es) = —g &5

Pi(es) = —g71e, D {es) = g % (3.7

Psle;) = €e_) Dsler) = er2en Dsles) = ces

Dsley) = ~eergé_y $s(es) = —cergé.s Ds(es) = —e2g2_6(3.8)
where € = ¢) = €3, (€, = (1, —1),(—1,1) or (—1, —1). We obtain in such a way four

real D = 4 conformal guantum algebras: one Uf' (o(4,2)) and three Ug’s(o(4, 2)). One
can show that:

(i) If we use the real form (3.7), the generators M,,, = (11, #13, €41, ex3) generate the
real Hopf subalgebra U, (e(3, 1)), i.e. we have

Uglo(3, 1)) C U (o4, 2)). (3.9

Unfortunately from the remaining generators {e+2, €44, €+4; @ = 4, 5, 8) one can not form
the real four-momenta generators which form, together with six generators M,,,, 2 closed
subalgebra of U (04, 2)).

(ii) For the real form (3.8) and ¢ = 1, &g = —1 the generators M, describe real
g-deformed o(4) Hopf algebra, i.e. we obtain

Uy (su(2) @ U, (su(2)) = Uy (0(8)) € US04, 2)). (3.10a)

(iii) For two real forms (3.8) with € = —1 (e = %1) the generators M,,, describe the
real g-deformed 0(2,2) algebra, i.e. we get

Uy (su(l, 1)) @ Uy(su(l, 1)) = Ugo(2,2)) C Uf’(o(tl, . (3.108).

We see that for physical applications the best choice is described by the real form (3.7),
l.e. we obtain real quantum conformal algebra with the quantum Lorentz algebra as its real
Hopf subalgebra. If we wish to obtain the sequence {1.5) of real Hopf algebras, one has to
consider the @-involutions firstly proposed in [2].
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4. All standard and non-standard real forms of U,(sl(4; c))

Let us introduce (besides (1.1) and (1.2))} the remaining two involutive automorphisms which
describe the automorphisms in the multiplication sector
{a-B)=a" b {Ala))* = A"

(@a-b)® =aqa®. p* (A@)® = A@®). (4.1)

We would like to introduce the basic involutive automorphisms of U, (s{(4; ¢)) from

which we will be able to construct all the morphisms describing standard and non-standard

real forms of U, (s{(4; c)). They are given by the following four mappings of U, (s!(4: ¢))
Hopf algebra into itself.

(i) Q-automorphism which is *-involution changing ¢ — ¢!t

Qews) = ew Q) =hy i=1,2,3 (4.2a)
Qless) = —qTlésq Qless) = —q¥'éys (4.2b)
Qless) = g less Qg=4g"". (4.2¢)

(il) Q-automorphism which is @-involution, exchanging the first and third root in the
Dyakin diagram of si(4; C) is not changing g

Q2(ex1) = ex3 Qi) =53

Q(ex2) = exn £(ha) = ha2 (4.3)
Qerq = éx5 Qexs = x4 (4.3b)
Qlerg = €16 Qg =q. (4.3c)

(iii) The transposition mapping T, which is @-involution not changing ¢:

T(es) = ex; T{h;) = —=h (4.4a)
T{esq) = €14 Teys = éxs5 (4.45)
T (exs) = €15 Tqg=gqg. (4.4c)

The transposition mapping T satisfying 72 = 1 differs only by numerical factor with the
antipode § (which does not satisfy the S = 1 condition).

(iv) Standard Cartan +-involutions (&3 = C(g,, €1, €3); (see (3.5)). One gets (see also
table 1):

Cles) = €z Chy = h; (4.5a)
Ceyq = —€162g™824 Cess = —€e3q* s (4.5b)
Ceyp = €162639 826 Cqg=gq. (4.5¢)

{ This involution denocted by o we found in [14].
{ This involution was suggested by V N Tolstoy.
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The complete set of the involutive automorphism of U, (si{4; ¢)) Hopf algebra is given
by the following seven types of involutions

Q, &, T, g, 9T, QT, QT (4.6}

possibly multiplied by the involution C(ey, €2, €3). Observe however that as we wish to
obtain involutions (morphisms which square equals identity) we must check whether basic
involutions commute among themselves. It is not always true in a case of C and Q.
Whenever we combine these two morphisms we should always assume that €; = €3 which
implies [C, ] = 0. Furthermore it turns out [8] that if combined with £ only C(1,1,1)
and C(1, =1, 1) give rise to non-isomorphic real forms.

Using the multiplication rules for the four types of involutions (note that identity is an
operation of type @) we see that:

Table 2. Muitiplication table for different types of involutions.

+ & * ®
+ 1 * e+
=] * H + 2]
3 [22] + 1 ®
[} + [} ® 1

(i) 12 standard +-involutions are given by Qo T, Qo 2o T, Cle, €2,¢3) and
20 C(ey, €9, €3). It appears that out of eight involutions 20 C only two {(e.g. 20 C(1, 1, 1)
and §2 o C{1, —1, 1)) are non-quivalent. Comparing with section 3 one can check that

O =Qo0QRaT  @y=QoT lg] =1
@3 = RoC(1,1,1) ®y=RoC(1,~1,1) g real @
®; = C(ey, €a€3) q real.

(i) 12 non-standard @-involutions are obtained by multiplying the standard involutions
(4.7) by Q treated as a complex-linear mapping (Q{wA) = ¢ Q(A) for « complex). Because
© describes the mapping ¢ — ¢~!, the conditions |g| = 1 (¢ real) in (4.7) are replaced by
g real (lg] = 1). One obtains

& =QoT . Py =T ' g real
P3=00QoC(1,1,1) By, = Q0oQowoC(l,~1,1) lgi =1 (4.8)
s = Qo Cler, &2, €3) |  lel=L

Two @-involutions considered in [2] providing U, (o(4, 2)) as real &-Hopf algebra are given
b}’ &31 and &34.
(iii) 12 non-standard #-involutions are obtained by multiplying the involutions (4.7} by
T, treated as a complex-linear mapping. One obtains
Y =008 Yy = 0 gl =1
W, =ToRcC(1,1,1) Wy=ToQol(l,-1,1) g real (4.9)

Vs =T o Cler, €2, €3) q real.
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(iv) 12 non-standard @-involutions (the twelfth is an identity mapping) is obtained by
multiplying (4.7) by Q o T, treated as complex-linear mapping

¥ =QoT 0, =1 q real
P3=0oToQoC(l,1,1) Jy=0cToQoC(l, -1, 1) lgl=1 (4.10)
‘-1-»’5= GoTeolle, e €3} lg] = 1.

In such a way all the involutions (4.7)~(4.10) are antilinear complzx mappings (see (3.1¢)).

5. Real forms of U,(sl(4; C)) and the universal R-matrix

Using the uniqueness theorem of Khoroshkhin and Tolstoy [15] cone can immediately see
what is a result of the action of four mappings introduced in the section 2 on the universal
R-matrix, Let us remind that according to the above mentioned theorem an element
R e U,(si(4; C)) ® U, (si(4; C)) satisfying two conditions:

(i) A'la) = Ro Ala)o R7Y,
(i) R € T;(by ® b.) (i.e. R belongs to the so-called Taylor extension of U,(by) ®
U, (b-), see [15])

is unique up to multiplicative constant. For a certain value of that constant R satisfies also
(A®1DDoR=R3z0cRn (@ A)o R = Rizc Ry (5.1)

The explicit construction of the universal R-matrix satisfying conditions (i} and (ii) was
given in [9, 11, 16). Here we would like to investigate the question what is Q(R), Q(R),
T(R}, C(R)Y with @, 2, T, C introduced in section 2, We derive first:

A(Q(a)) = QR o A(Q(a)) o Q(R)

A'(R(a)) = Q(R) 0 A(R(a)) o R(R™")

A'(T(a)) = T(R} o A(T{a)) o T(R™")

A'(C(a)) = C(R™) o A(C(a)) o C{R). (5.2)

We observe thatfor X =Q,Q,7,C
[X(a), a € Uy(si(4; C))} = Uy (sl(4; C)). (3.3)
Itisalsoclearthat for Z =0, Q, T
Z{by) C by (5.4a)
and
Clby) C bx. (5.4h)
From that we immediately obtain that

O(R) = R™! T(R) = R

(5.5)
Q{R)=R C(RY=toR.
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In particular for five real forms listed by Twietmeyer we obtain:
®(R) = R™! &,(R) = R~} ®3(R) =toR
®(R)=10R q)s(R) =rtoR. ) (56)

Let us remind that for the first two morphisms |¢| = 1, while for the last three g ¢ R.
The relations (5.6) can also be checked explicitly if we observe that the formula for the
universal U, (s/{4; ¢)) R-matrix has a form (see e.g. [11])

R= RE.‘. RE4REﬁREZRE§REB - K

5.7
= RE:,RF:}REzREORE}RE: - K
where the root generators E.4 are given by (2.12) and
Re, = exp,al(g — ¢7 ) Ex ® E_y] ' (5.84)
K=g%k®h  (,j=123) | (5.85)
where
xn
exp,(x) = : 5.9a
p,(x) X;; o (5.9a)
(Mg! = (Vg(Dy --- (m)q (5.95)
1 — k
k), = — 2 (5.9¢)

1=

and d;; is the inverse matrix for symmetrical Cartan matrix given in (2.1).
The relation (5.7) kas been written in two equivalent forms, corresponding to the
clockwise and anti-clockwise normal order of root generators [10, 11].

6. Final remarks

The aim of this paper is to show that the standard reality conditions impose severe restrictions
on the choice of quantum deformations of real D = 4 conformal algebra. In particular it
does not exist real D = 4 quantum Weyl algebra with standard reality conditions obtained
as Hopf subalgebra of U/,(s/{4; ¢)). In such a way the proposal presented in [2] can not be
improved.

It should be mentioned here that another quantum deformation of D = 4 quantum
Weyl algebra, with standard reality condition has been recently derived from the ditferent
realizations on g-deformed D = 4 Minkowski space [17]. Unfortunately we were not able
to find the formulae relating these two deformations—one obtained in purely algebraic way,
and the second abstracted from a concrete realization in the framework of non-commutative
differential geometry.
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