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Abstract. The sfar operations and reality conditions for the complex quantum algebra 
U q ( d ( 4 C ) )  providing real quantum algebras U,,(0(6 - k . k ) ) k  = 0, I. 2.3 and Uq(su(3. 1)) 
are classified. S W x d  and non-standud sex operations me considered. It appears that only 
four choices of real forms (one with 141 = 1, h e  with q real) provide real Hopf algebra 
Uq(su(2, 2 ) )  = Uq(0(4, 2)) describing D = 4 conformal quanNm alpbras. We show that only 
the antipod-extended Cartan-Weyi basis of Uq(sl(4; C)) permits to define real q-defomd 
D = 4 wnformal algebra generators. In order to obtain the real D = 4 Weyi algebra as Hopf 
subalgebra of Uq(sw(2. 2)) only the non-standard real forms can be employed. 

1. Introduction 

Recently the Cartan-Weyl basis of quantum Lie algebra Uq(s1(4: C)) was considered as the 
framework for the description of q-deformed D = 4 conformal algebra [ 1-51. Because 
the algebra d(4,C) describes complexified D = 4 conformal algebra it is important 
to'select real forms of Uq(s1(4; C)) describing q-deformed D = 4 conformal algebra 
Uq(su(2, 2)) N Uq(0(4, 2)). In the paper [2] two real forms of U,(o, (4,2)) were obtained 
by using non-standard @-involution which is .an automorphism in both algebra and coalgebra 
sectors 11: 

(0. b)" = b" . U' (A@))" = A'@") ( 1 . 1 )  

where A' = r o A  ( r  is a flip operator). Unfortunately at least for generic q the non-standard 
61 involutions at least for generic q iead to difficulties in the representation theory of @ 
real Hopf algebras (e.g. it is not known how to avoid the indefinite metric in the tensor 
product representations). In this paper we would like to consider the standard real forms of 
U q ( d ( 4 ;  C!)) with the star operation described by + involution satisfying the relations: 

( a .  6)' = bi . U +  (A(u))+ = A@+). (1.2) 

* Partially supponed by KBN grant Nr.U0124/91/01. 
T On leave of nbsence from Institute of Theoretical Physics, Wroclaw University, PI. Maxa Boma 9, 50-205 
Wroclaw, Poland. 
I1 Four possible types of involutive mappings of the Hopf algebras denoted by t, @, * and @ were introduced 
in IS] and subsequently discussed in r6.71. The @-involution is denoted in 171 as (I,]) and t-involution as (1.0) 
semilinear mappings. 

0305~7W931164047t1207.50 @ 1993 IOP Publishing Ltd 4047 
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The difference between the involutions (1.1) and (1.2) appears also in different forms of the 
compatibility conditions of the star operation with the anitpode S 15-71: 

S o f B = $ o S  S o + o S o + = l .  (1.3) 

Curiously enough it was easier to define the real q-deformed conformal generators if we used 
the non-standard involution (1.1). Using the following fB involution of the Canan-Weyl 
basis of U9(s1(4; @)) (for real q )  

h y  = -hj hf = -hz 

= e13 eE2 = e a  (1.4) 

we were able to show in [2] that the following sequence of inclusions of real Hopf algebras 
is valid: 

( 1.5) U q ( O ( 3 ,  1 ) )  C Uq(%+3 D) C Uq(O(4,2)> 
where Uq(F4+3 D) denotes real D = 4 q-deformed Weyl algebrat. The sequence (1.5) is 
important from the point of view of possible physical applications. 

One can raise an important question whether the sequence (1.5) can be written with 
reality conditions described by the standard involution ( I  .2). Unfortunately the answer 
is negative. We shall show below that there are only foor standard + involutions defining 
q-deformed real D = 4 conformal algebra U9(o(4, 2)) both having the following properties: 

(i) The involutions take out from the Cartan-Weyl basis, i.e. in order to define for q # 1 
the D = 4 conformal generators, one has to introduce 21 generators of antipode-extended 
Cartan-Weyl generators (15 generators of Cartan-Wey! basis and six generators S(e*,) 
where a = 4,5,6). 

(ii) The relation (1.5) is not valid, i.e. the real q-deformed conformal algebras defined 
by means of standard involutions can not be used for defining the q-deformed Poincare and 
Weyl algebras. 

The plan of our paper is the following. Firstly in section 2 we present the Cartan-Weyl 
basis of complex quantum algebra U 9 ( d [ 4 ;  e)), i.e. provide the algebra, coproducts and 
antipodes for 15 generators hi,  e*a(A = 1 . . .6). The action of antipode S introduces 21 
generators of antipode-extended Cartan-Weyl basist. In section 3 following Twietmeyer 
[SI we provide the description of real Hopf algebras U,,(o(6 - k , k ) )  ( k  = 0. 1,2,3)  and 
Uq(su(3, 1)) as real forms of U9(s1(4; C)). It appears that many reality conditions take out 
from the Cartan-Weyl basis. and we would like to stress that all the real forms defining 
Uq(o(4, 2) )  are of this type. In section 4 we introduce three involutive automorphisms of 
U,(s1(4; C)):  

(i) Q-automorphisms (type *) describing mapping q --f q-’; 
(ii) il-automorphism (type 0) exchanging the first and third root in the Dynkin diagram 

for sl(4; @) (q unchanged); 
(iii) T-automorphism (type 69) reversing the order of operators in products (q 

unchanged). 
We shall show that having these three operations one can obtain all the other involutions of 
Uq(s1(4; e)) belonging to the four types of involutive automorphisms discussed in [5,7]. 
In section 5 we shall discuss the reality conditions for the universal R-matrix of D = 4 
q-deformed conformal algebra. In section 6 we shall present final comments. 

t We denote by Pd the d = 4 Poincar6 algebra md by D the dilatation openuor. 
t In section 2 we sNl  present the formulae f” [Z] with the ermr in the coproduct semi correcfed. 
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2. Antipode-extended Cartan-WeyI basis for U9(s1(4; C)) 

4049 

The Cartan-Cheveley basis of Uq(s1(4; C)) is given by the formulae: 

[h j ,  hxl = 0 

where hi describe the Cartan subalgebra and ej, e-j ( j  = 1,2 ,3)  are the generators 
corresponding to simple roots. Let us define the generators corresponding to non-simple 
roots as follows [9, 101: 

where [ A ,  51, = A 5  - x 5 A .  It appears that relations (2.1) can be extended as follows 
(A, 5 = 1 ... 6) 

2 - 1 0  1 - 1 1  
- 1 2 - 1 1  1 0  

-1 2 -1 1 
[hA,e*Al=faABehB aAB = ; ; (2.3) 

1 2  

where h4 = hl + hz, hs = hz + h3, h6 = hl  + 115 and 

(2.4) 

We can write down also all the remaining relations between generators of Uq(s1(4; C)). 
For generators corresponding to positive roots we obtain: 

supplemented by 
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Further, we obtain 

If we add to the relations (2.5)-(2.73, the conjugated ones obtained by means of the 
involutive antiautomorphism h j  + h j ,  e i j  -$ eFj, q + q-' we obtain the complete 
set of relations describing the Cartan-Weyl basis of Uq(sl(4; C)). 

The formulae for coproducts are the following (this choice is not unique; see e.g. 
equation (2.12)): 

A(e&j) = e+j @ kj + k;' @ e i j  

A ( k F L )  = k:' @ k:' j = 1,2.3 

(2.11) 

One can extend the relations for Cartan-WeyI basis by adding the generators (2.1 I). 
It should be mentioned that we introduce the new generators 

&A = 9 * h n / 2 e i A  - (2.12) 
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the coproducts are given by the following non-symmetric form: 

(2.13) 

and the formulae (2.1) and (2.4) can be written for the generators E+* if [ X I ,  = 
( I  -q”)/(l - 4’). It appears, for example, that the coproducts (2.13) were used in  [ I l l  in 
the derivation of the universal R-matrix formula. One can also think of coproduct (2.13) 
as obtained from (2.8) by twisting [12J. 

3. Standard real forms of Uq(sZ(4 C)) 

Twietmeyer [SI obtained a complete list of standard real forms of U,(G), where G is 
any simple complex Lie algebra. By a standard real form we mean here a morphism @: 
U,(G) --t Llq(G) with the following properties ( X ,  Y E G, p,  U E C):i 

(3.la) 

(3.lb) 

(3.lc) 

A o CJ = (0 @3 CJ) o A (3.14 

which imply 

Twieuneyer’s list was given for the specific choice of the coproduct in U,(g)-that 
given for U,(s1(4; c)) by (2.13). It can however be shown that for other coproducts one 
obtains analogous classification and our results below are given for the coproduct (2.8). As 
q -+ 1 they in fact become the same. 

In applications one must be able to recognize which real form of the complex Lie 
algebra G does correspond to 0, For this purpose we would like to remind some basic 
facts from the theory of real Lie algebras. A fundamental theorem (see e.g. [13]) tells us 
that real forms of a complex simple Lie algebra G are described by means of involutive 
automorphisms of G, i.e. mnorphisms W satisfying: 

(3.3) 

The simplest method to investigate which two transformations with the above properties 
describe isomorphic real Lie algebras is based on the analysis of the action of W on the 
(unique) compact real form of G. When diagonalized * can only have eigenvalues i l .  If 

i According to 151 the standard real forms are described by +-involution. The relations (3.lb) and (3 . le)  are 
wrinen already as relations (1.2) (first one) and (1.3) second one). 
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‘negative’ eigenvectors are multiplied by i we obtain a real Lie algebra Gv wzith generators 
satisfying the reality condition W(X) = X. Two V’s with different spectrum define non- 
isomorphic real Lie algebras (see e.g. [13]). 

In the case of d(4;  @) spectrum of W characterizes real forms completely. If we look 
at five real forms of that Lie algebra we quickly recognize that corresponding @’s have the 
following number of minus signs in  their spectrum (in the action on su(4)): 

su(4) - 0 su(3, 1) - 6 
sl(4; a) - 9 SU*(4) - 5 
su(2,2) - 8 .  (3.4) 

As q + 1 every antiautomorphism @ given in (3.1) defines a real form of sl(4; @)- 
it consists from elements satisfying the condition @(X) = -X. It is easy to find a 
corresponding automorphism \Ir which gives rise to the same set of real generators. If we 
look now at its spectrum we immediately recognize what real form of sl(4; @) is described 
by @. Twietmeyer obtained 12 non-equivalent real forms in that case. As q + 1 they 
correspond to all five real forms of sK4; @). Both numbers disagree as we obtain four 
non-isomorphic quantum deformations of Uq(su(2;  2 ) )  = U9(o(4,  2)), two deformations 
of U9(s[(4; R) U9(o(3, 3)) and four deformations of 4 3 ,  1); only deformations of 
U9(su(4)) Uq(0(6)) and U9(su*(4)) N U9(o(5, 1)) have unique (up to equivalence) real 
forms. Here we reproduce a complete list of real forms of Uq(s l (4;  @) (for a coproduct 
given in equation (2 .8);  j = 1.2.3): 

141 = 1 @ ~ ( h j )  = 4 4 - j  % ( e l , )  = e*(4-j) U q ( o ( 4 , 2 ) )  

141 = 1 @ z ( h j )  = -hj @2(e+j)  = e*, U,(o(3,3)) 

E W @ 3 ( h j )  = h4-j @3(e*j) = eF(4- j )  Uq(O(5 ,  1)) 

q E R @ & j )  = h4-j @de*,) = ( - )8~ ,1eT+j )  Uq(0(3 ,  3)) 

q E R @s(h,) = hj @ s ( e i j )  = EjeTj ( € j  =*I). (3.5) 

The real forms described by Cartan involutions 05 are given in the following table: 

Table I. Standard CMan +- involutions for Uq(s1(4: c)). 

C I  f2 63 Real form 

I 1 I Uq(o(6) )% Uq(su(4))  

I - I  I Up(o(4.2)) % Uq(su(2,2)) 
- I  I I Uq(su(3,1)) 

- I  - I  I Uq(S”(3.1)) 
I I - I  Uq(su(3,1,) 

- 1  1 - I  Uq(o(4.2)) = Uq(SU(2,2)) 
- I  - I  - 1  Uq(0(4,2))  2 Uq(SU(2.2) )  

I - I  - I  Uq(su(3,1))  

The rnorphisms 4k ( k  = I , . . 5 )  are completely defined by its action on simple root 
generators of Uq(sZ(4; c)). In particular we can deduce how does @ act on other generators 
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of the Cartan-Weyl basis. Let us take for example e4 = [el,  e&. In five cases listed in 
equation (3.5) we obtain: 

Therefore only in the case of real forms defined by means of morphisms @ z ,  03, a4 does its 
action not lead us outside the Cartan-Weyl basis. On the other hand and Os inevitably 
leads us to the antipode-extended Cartan-Weyl basis defined in (2.11). 

We see that deformation of the conformal algebra su(2; 2) can only be achieved by 
means of morphisms @I and Q5, with EI = €3 = -1 or €1 = 63 = 1 and €2 = -1. 

Let us write the action of Q I ,  @5 on the Cartan-Weyl basis of Uq(s1(4; c)).  providing 
real conformal algebras Uq(0(4, 2 ) ) :  

aI(eI) = e3 ~ I ( e z )  = e2 aL(e.4) = -q-'es 

= -q-'& @1(e6) =q-'& (3.7) 

@s(el) = t e - I  @5(ez) = 62e-z @5(e3) = te-3 

@s(e4) = -6tZqZ-4 @s(es) = --Etzqi-s Odes) = --Ezqi-6 (3.8) 

where 6 = E ]  = €3,  ( E ,  €2) = (1, -I), (-1, 1) or (-1, -I). We obtain in such a way four 
real D = 4 conformal quantum algebras: one U:l(0(4,2)) and three U 2 ( 0 ( 4 , 2 ) ) .  One 
can show that 

(i) If we use the real form (3.7), the generators M,, = ( h , , h 3 , e * , ,  e+3) generate the 
real Hopf subalgebra Uq(o(3, I)), i.e. we have 

Uq(O(3, 1)) c U 3 ( 4 , 2 ) ) .  (3.9) 

Unfortunately from the remaining generators (e*z, e*a, Z+=; Q = 4,5,6) one can not form 
the real four-momenta generators which form, together with six generators M,". a closed 
subalgebra of U 2 ( 0 ( 4 , 2 ) ) .  

(ii) For the real form (3.8) and t = 1, 62 = -1  the generators M,, describe real 
q-deformed o(4)  Hopf algebra, i.e. we obtain 

U,(su(2)) C3 U,(su(Z)) = Uq(o(4)) C U 2 ( 0 . ( 4 , 2 ) ) .  (3.10~1) 

(iii) For two real forms (3.8) with E = -1 (€2 = i l )  the generators M,, describe the 
real q-deformed 0(2,2) algebra, i.e. we get 

Uq(su ( l ,  I)) C3 U,(su(l, 1)) = LIq(o(2,2)) c U 2 ( 0 ( 4 , 2 ) ) .  (3.106). 

We see that for .physical applications the best choice is described by the real form (3.7). 
i.e. we obtain real quantum conformal algebra with the quantum Lorentz algebra as its real 
Hopf subalgebra. If we wish to obtain the sequence (1.5) of real Hopf algebras, one has to 
consider the @-involutions firstly proposed in [2 ] .  
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4. All standard and non-standard real forms of Uq(s2(4; c)) 

Let us introduce (besides (1. I )  and (1.2)) the remaining two involutive automorphisms which 
describe the automorphisms in the multiplication sector 

We would like to introduce the basic involutive automorphisms of U q ( d ( 4 ;  c ) )  from 
which we will be able to construct all the morphisms describing standard and non-standard 
real forms of U,,(s1(4; c ) ) .  They are given by the following four mappings of U4(s1(4; c ) )  
Hopf algebra into itself. 

(i) Q-automorphism which is *-involution changing q + q- l t  

P ( e d  = Q(h;) = h; i = 1 , 2 , 3  (4 .k)  

Q ( e d  = - q T ' G 4  Q(e-ts) = -q"& (4 .2b)  

Q(e+6) = q'*& Qq = 9-l .  ( 4 . 2 ~ )  

(ii) R-automorphism which is @-involution, exchanging the first and third root in the 
Dynkin diagram of s l (4 ;  C) is not changing q$ 

(4.3) 

(4 .3b)  

(4.3c) 

(4.4a) 

(4.4b) 

(4 .4c)  

The transposition mapping T satisfying T 2  = 1 differs only by numerical factor with the 
antipode S (which does not satisfy the Sz = 1 condition). 

(iv) Standard Cartan +-involutions (@ 3 C ( E I , Q ,  €3); (see (3.5)). One gets (see also 
table 1): 

(4.5a) 

(4 .5b)  

(4.5c) 

t This involution denoted by D we found in [14]. 
t This involution w x  suggested by V N Tolsroy. 
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The complete set of the involutive automorphism of Uq(s1(4; c ) )  Hopf algebra is given 
by the following seven types of involutions 

Q, Q, T ,  QQ,  QT, QT, QQT (4.6) 

possibly multiplied by the involution C ( E I ,  €2, €3). Observe however that as we wish to 
obtain involutions (morphisms which square equals identity) we must check whether basic 
involutions commute among themselves. It is not always true in a case of C and Q. 
Whenever we combine these two morphisms we should always assume that €1 = €3 which 
implies IC, Q] = 0. Furthermore it turns out [SI that if combined with Q only C(1,1, 1) 
and C(1, -1, 1) give rise to non-isomorphic real forms. 

Using the multiplication rules for the four types of involutions (note that identity is an 
operation of type 0) we see that: 

Table 2. Multiplication table for different types of involutions 

+ I * @ +  
@ * ? t @  
* @ + I *  
@ + @ * I  

(i) 12 standard +-involutions are given by Q o T ,  Q o Q o T ,  C ( E I . E ~ , E ~ )  and 
Q O C ( E ~ , E ~ , E ~ ) .  It appears that out of eight involutions Q o C  only two (e.g. QoC(1 ,  1, 1) 
and Q o C(1, -1. 1)) are non-quivalent. Comparing with section 3 one can check that 

01 = Q o Q o T  @ 2 = Q o T  141 = 1 

a3 = Q o C ( 1 .  1 , l )  a4 = Q 0 C(1, -1, I) q real (4.7) 

a5 = C(EI, €263) q real. 

(ii) 12 non-standard @-involutions are obtained by multiplying the standard involutions 
(4.7) by Q treated as a complex-linear mapping (Q(aA) = a Q ( A )  for 01 complex). Because 
Q describes the mapping q + q- ' ,  the conditions 141 = 1 (q real) in (4.7) are replaced by 
q real (Iql = 1 ) .  One obtains 

61 = Q o T  62 = T q real 

6j = Q o Q o C ( 1 ,  1 , l )  

65 = Q 0 C(EI, €2,  €3) 

64 = Q o Q o w  o C(1, -1.1) 141 = 1 

141 = 1. 

(4.8) 

Two @-involutions considered in [Z] providing Uq(o(4, 2)) as real @-Hopf algebra are given 

(iii) 12 non-standard *-involutions are obtained by multiplying the involutions (4.7) by 
by 6, and 64. 

T, treated as a complex-linear mapping. One obtains 

' P i = Q o Q  q 2  = Q 141 = 1 

' P 5  = T 0 C ( ~ I ,  €2, €3)  q real. 

' P ~ = T o Q o C ( l , l , l )  'P4 = T o QoC(1,  -1. 1) qreal (4.9) 



4056 J Lukierski et ul 

(iv) 12 non-standard @-involutions (the twelfth is an identity mapping) is obtained by 
multiplying (4.7) by Q o T ,  treated as complex-linear mapping 

@ , = G O T  G * = l  q real 

@ 3 =  Q o T o Q c C ( 1 , 1 ,  1) li4 = Q o T c Q o c(i, -1,i) lql = 1 (4.10) 

@s = Q o T o C ( E I ,  €2, €3) 141 = 1. 

In such a way all the involutions (4.7)-(4.10) are antilinear complsx mappings (see (3.1~)). 

5. Real forms of Uq(s1(4; e)) and the universal R-matrix 

Using the uniqueness theorem of Khoroshkhin and Tolstoy 1151 one can immediately see 
what is a result of the action of four mappings introduced in the section 2 on the universal 
R-matrix. Let us remind that according to the above mentio:ied theorem an element 
R E Uq(s1(4; C)) C3 Uq(s1(4; C)) satisfying two conditions: 

(i) A‘(u) = R o A ( a )  o R-’, 
(ii) R E Tq(b+ C3 b-) (i.e. R belongs to the so-called Taylor extension of U,(b+) @ 

Uq(b-) .  see 1151) 

is unique up to multiplicative constant. For a certain value of that constant R satisfies also 

(5.1) 

The explicit construction of the universal R-matrix satisfying conditions (i) and (ii) was 
given in [9,11,161. Here we would like to investigate the question what is Q(R) ,  S2(R), 
T ( R ) ,  C ( R )  with Q ,  Q, T ,  C introduced in section 2. We derive first: 

(A C3 1) o R = R13 0 R23 (1 C3 A )  o R = R13 (i Rlz. 

A’(Q(n))  = Q(R-’) 0 A(Q@))  0 Q ( R )  
A ’ ( n ( a ) )  = Q ( R )  o A ( Q ( u ) )  o Q(R-’ )  

A’ (T(a) )  = T ( R )  o A ( T ( u ) )  o T(R-’) 

A’(C(u))  = C(R-’ )  o A(C(u))  o C ( R ) .  

We observe that for X = Q ,  S2, T ,  C 

[ X ( a ) ,  U E U,(s1(4; e))] = Uq(sf(4; C)). 

It is also clear that for Z = Q ,  R, T 

Z ( b d  c bj: 
and 

C(b+:) C 6,. 

From that we immediately obtain that 

Q ( R )  = R-’ T ( R )  = R 

Q ( R )  = R C ( R )  = r o R. 

(5.2) 

(5.3) 

(5.44 

(5.4b) 

(5.5) 
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In particular for five real forms listed by Twietmeyer we obtain: 

@ , ( R )  = R-' 

@ d R )  = r o R 

Oz(R) = R-' @3(R) = r o R 

@s(R) = r o R .  (5.6) 

Let us remind that for the first two morphisms 1q/ = 1, while for the last three q E W. 

universal U,(s1(4; c)) R-matrix has a form (see e.g. [ill) 
The relations (5.6) c.m also be checked explicitly if we observe that the formula for the 

(a),! !e (r),(2), . . . (a), 

1 -qk 
( k ) ,  = - 

1 - 4  

( H a )  

(5.8b) 

(5.9a) 

(5.9b) 

(5.9c) 

and d;j is the inverse matrix for symmetrical Cartan matrix given in  (2.1). 

clockwise and anti-clockwise normal order of root generators [IO, 111. 
The relation (5.7) Las been written in two equivalent forms, corresponding to the 

6. Final remarks 

The aim of this paper is to show that the standard reality conditions impose severe restrictions 
on the choice of quantum deformations of real D = 4 conformal algebra. In particular it 
does not exist real D = 4 quantum Weyl algebra with standard reality conditions obtained 
as Hopf subalgebra of U,(s1(4; c)). In such a way the proposal presented i n  [2] can not be 
improved. 

It should be mentioned here that another quantum deformation of D = 4 quantum 
Weyl algebra, with standard reality condition has been recently derived from the different 
realizations on q-deformed D = 4 Minkowski space [17]. Unfortunately we were not able 
to find the formulae relating these two deformations-one obtained in purely algebraic way, 
and the second abstracted from a concrete realization in the framework of non-commutative 
differential geometry. 

Acknowledgments 

The authors would like to thank V N Tolstoy for fruitful discussions. One of the authors (JS) 
would like to thank Professor S Albeverio for warm hospitality at the Bochum University. 



4058 J Lukierski et a1 

References 

[I ]  Dobrev V 1991 Gottingm Univemifypreprinr 
121 Lukierski I and Nowicki A 1992 Wmcfaw,Phys. Lett, B 279 299 
[3] Lukierski 1, Nowicki A and Ruegg H 1991 Boslon Universitypreprint BUHEP-91-21 (to appear in Quantum 

Groups ed H D Doebner and V Dobrev (Berlin: Springer)) 
(41 Dobrev V 1992 Prephint 7rieste IU9U13 (to appear in Quanrum Croups ed H D Doebner and V Dobrev 

(Berlin: Springer)) 
[5]  Lukierski I, Nowicki A and Ruegg H 1991 Phys. Lett. 271B 321 
[6] Momymas M 1992 Bordeaux Universifypreprinr LPTB 92-2 
[7] Scheunerl M 1992 Bonn Uniwrsify preprint Bonn-HE-92-13 
[SI Twiermeyer E 1992 Lelr Mark Phys. 24 39 
[9] Rasso M 1989 Commun. Math. Phys. 124 307 

[IO] Tolstoy V N 1990 Proc. Workshop 'Quantum Croups (Clousfhal, 1989)'fSpringer Leclure Notes in Physics) 

[ I  11 Khoroshkhin S M and Tolstoy V N 1991 Commun. Marh. Phys. 141 599 
[I21 Reshetikhin N 1990 Letr. Moth  Physics 20 331 
[I31 B m l  A m d  Raczka R 1980 Theoq of Croup Representations and Applicnrions (Warsaw: PWN) 
[I41 Drinfeld W G Algebra i Andie 1 30 (in Russian) 
[I51 Khoroshkin S M and Tolstoy V N 1992 Wrvciaw Univerrifypreprinr No UWr SOOl92 (Lett. Math. Physicr 

[I61 Kirillov A N and Reshetikhin A N 1990 Commun. Math. Pliys. U4 421 
[I71 Ogievetsky 0. Schmidke W B, Wess J and Zumino B 1991 Mar PlanckwdBerkeieypreprint MPI-PW1-99 

ed H 0 Doebner 

in press) 


